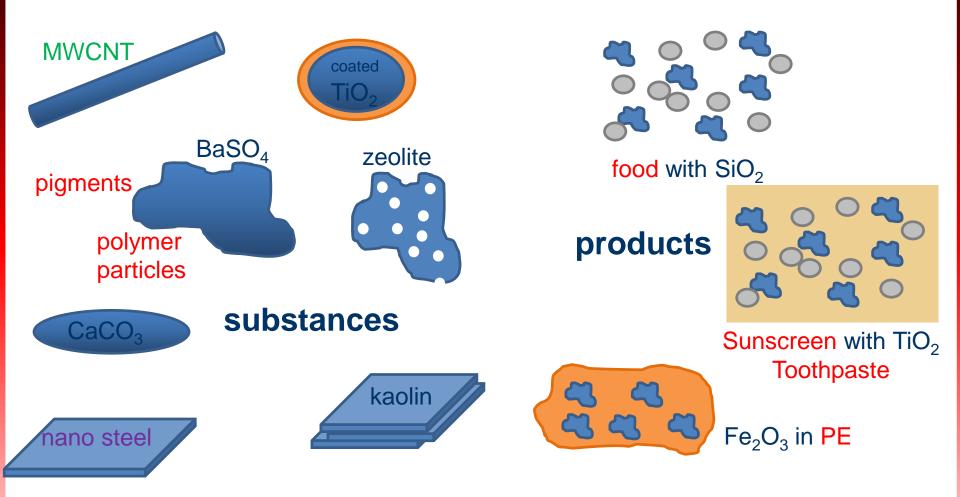


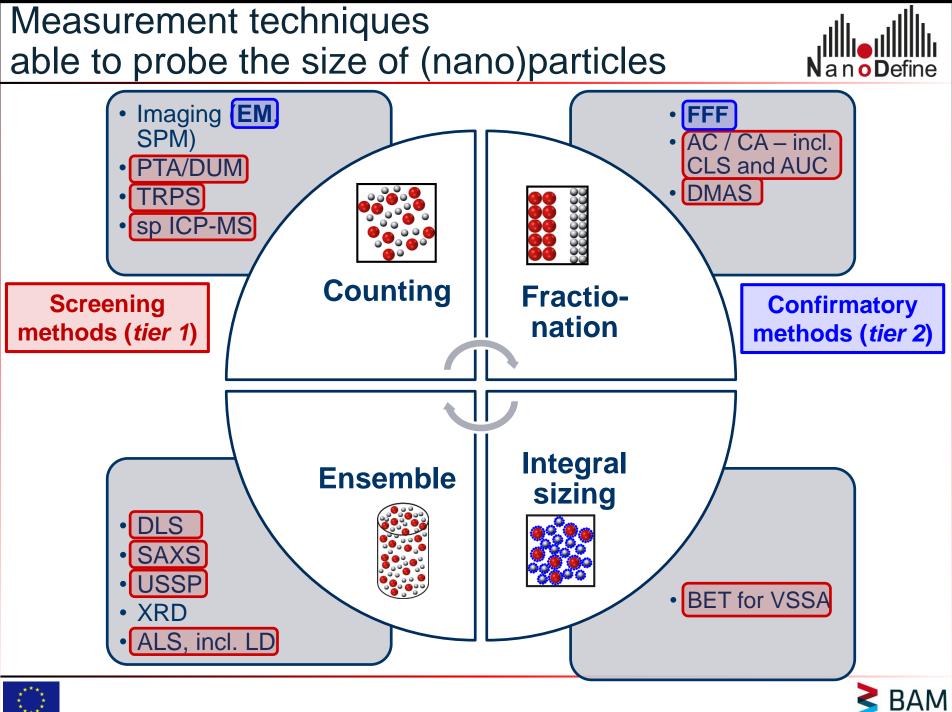
EMERGING GUIDANCE ON METHODS AND DECISION TREE FOR THE IDENTIFICATION OF NANOMATERIALS

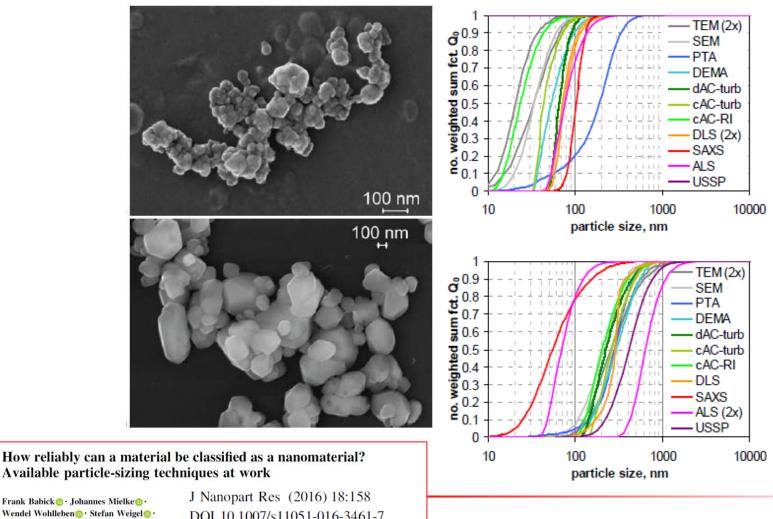
Frank Babick^a, Johannes Mielke^b, <u>Wendel Wohlleben^c</u>, Stefan Weigel^d and Vasile-Dan Hodoroaba^b,

a) Technische Universität Dresden (TUD), 01062 Dresden, GERMANY.
b) Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, GERMANY.
c) BASF SE, Dept. Material Physics, 67056 Ludwigshafen, GERMANY.
d) RIKILT – Wageningen UR, 6700 AE Wageningen, NETHERLANDS. (present: Bundesinstitut für Risikobewertung (BfR), 10589 Berlin, Germany)


Provide *Industries* and *regulatory agencies* with the tools that support the implementation of **the definition** in all relevant regulatory contexts.

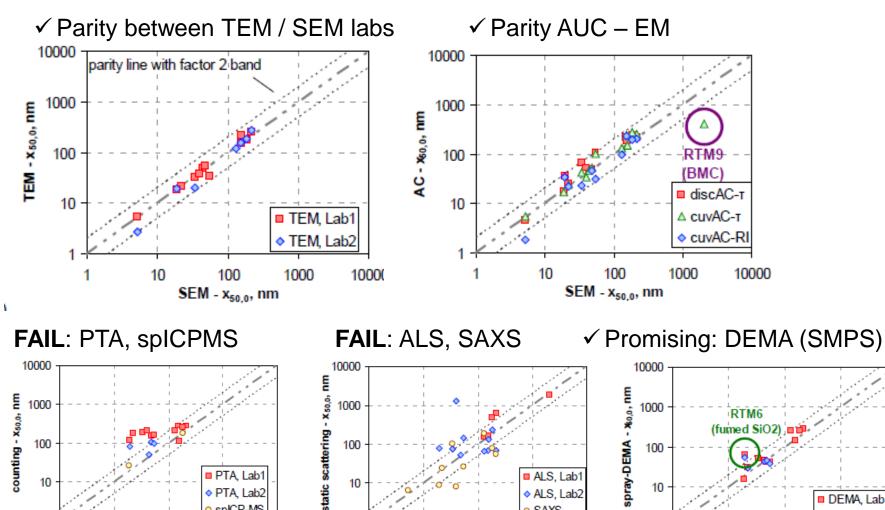
The NanoDefine foreseen solution will be:


- Easy to implement: as it integrates the current practice/facilities/expertise present at end-users with new developments
- Cost efficient: as it offers a tiered approach for the selection of the most adequate analytical route to get to a classification according to the definition with the least possible effort
- Flexible: as it defines criteria for the inclusion of novel technologies and can be adopted easily to changing regulatory requirements
- Sustainable: as the developed approach will be implemented in structures that persist beyond the duration of the project

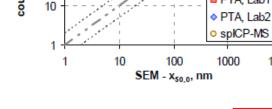


Can techniques differentiate nano vs non-nano grades?

EC nanodefinition (number metrics size distribution) determined for "ultrafine" BaSO₄ & "fine" BaSO₄



Frank Babick · Johannes Mielke · Wendel Wohlleben : Stefan Weigel : Vasile-Dan Hodoroaba 💿


DOI 10.1007/s11051-016-3461-7

Established techniques applied to real-world particulate materials

10

Frank Babick : Johannes Mielke Wendel Wohlleben : Stefan Weigel : Vasile-Dan Hodoroaba 💿

10000

J Nanopart Res (2016) 18:158 DOI 10.1007/s11051-016-3461-7

100

SEM - x50.0, nm

ALS, Lab2

10000

SAXS

1000

10

10

100

SEM - x50,0, nm

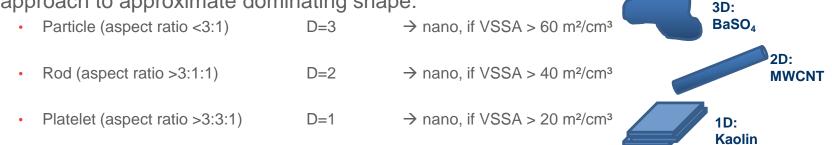
DEMA, Lab1

DEMA, Lab2

10000

1000

Quantitative relationship VSSA - EM



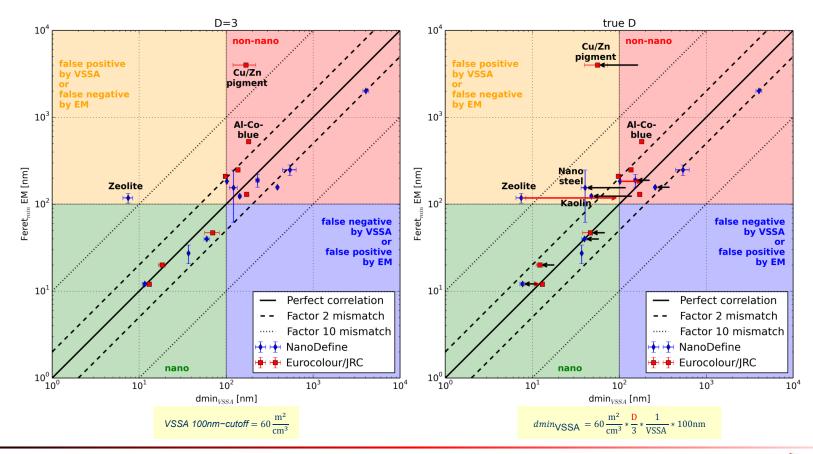
JRC report #2 introduces VSSA cutoffs adapted to shape.

• D = number of small dimensions (Roebben et al., 2014) :

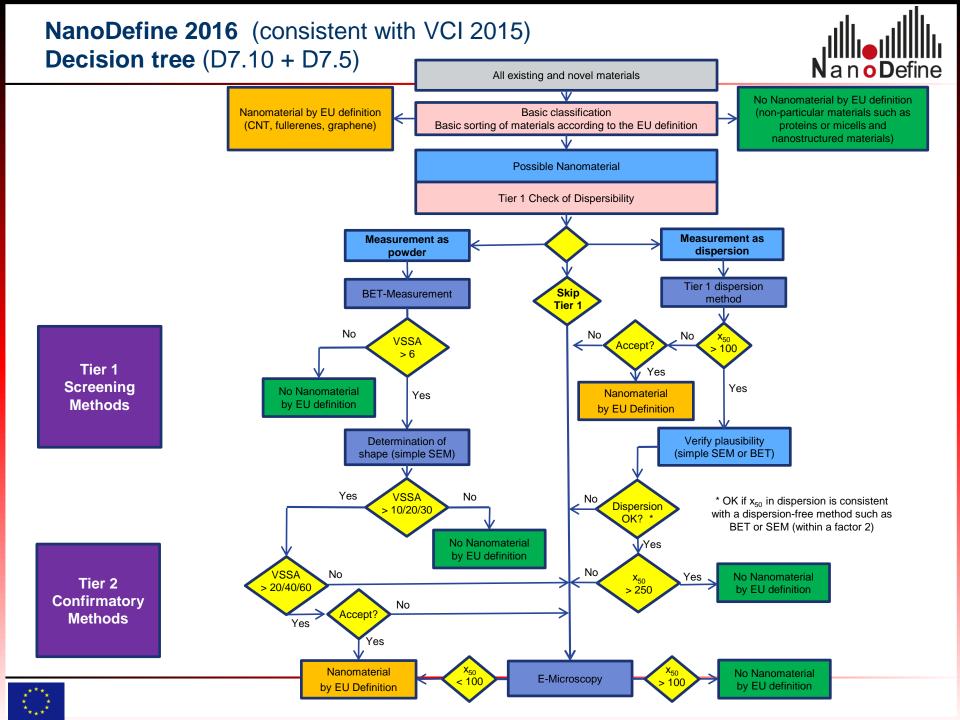
VSSA cutoff = $60 \frac{m^2}{cm^3} * \frac{D}{3}$

 Concept assumes that the contribution to surface area is negligible from the surfaces that delimitate the large dimensions. Pagmatic approach to approximate dominating shape:

 Extract from a specific surface area measurement the diameter of the smallest dimension, and compare it to the 100 nm cutoff:


VSSA % of cutoff =
$$60 \frac{m^2}{cm^3} * \frac{D}{3} * \frac{1}{VSSA}$$

W. Wohlleben, J. Mielke, A. Bianchin, A. Ghanem, H. Freiberger, H. Rauscher, M. Gemeinert and V.-D. Hodoroaba BASF Ludwigshafen, BAM Berlin, MBN Vascon di Carbonera, Solvay Brussels, JRC Ispra, submitted (2016) NanoDefine VSSA decision scheme for powders applied on a training set of industrial materials


VSSA (dmin_{VSSA}) vs. EM (Feret_{min})

W. Wohlleben, J. Mielke, A. Bianchin, A. Ghanem, H. Freiberger, H. Rauscher, M. Gemeinert and V.-D. Hodoroaba BASF Ludwigshafen, BAM Berlin, MBN Vascon di Carbonera, Solvay Brussels, JRC Ispra, submitted (2016)

- The NanoDefiner e-tool: Standardised automated procedure for method selection and NM classification for the most economic implementation of the definition
- The NanoDefine Method Manual: Technical guidance on the use of available methodologies
- Standard operation procedures (SOPs) for analysis of materials and products
- CEN/ISO work items for key methods
- Calibration standards and reference materials
- Instruments prototypes tailored to the requirements of the definition
- Technology transfer of developed methods to end users

Nom générique	Bande de tonnage	
Carbon black	> 100 000 t	
Silicon dioxide	> 100 000 t	
Calcium carbonate	10 000 t à 100 000 t	
Titanium dioxide	10 000 t à 100 000 t	
Boehmite (AI(OH)O)	1000 t à 10 000 t	
Copolymère de chlorure de vinylidène	1000 t à 10 000 t	
Silicic acid, magnesium salt	1000 t à 10 000 t	
Aluminium oxide	1000 t à 10 000 t	
Polychlorure de vinyle	1000 t à 10 000 t	
Mélange réactionnel de dioxyde de cérium et de dioxyde de zirconium	1000 t à 10 000 t	
Calcium 4-[(5-chloro-4-methyl-2- sulphonatophenyl)azo]-3-hydroxy-2-naphthoate	1000 t à 10 000 t	
Kaolin	100 t à 1000 t	
3,6-bis-biphenyl-4-yl-2,5-dihydropyrrolo[3,4- c]pyrrole-1,4-dione	100 t à 1000 t	
Iron hydroxide oxide yellow	100 t à 1000 t	
Aluminium hydroxide	100 t à 1000 t	
Diiron trioxide	100 t à 1000 t	
Iron hydroxide oxide	100 t à 1000 t	
3,6-diphenyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4- dione	100 t à 1000 t	

French Inventory Rapport publique 2015

2,2'-[(3,3'-dichloro[1,1'-biphenyl]-4,4'- diyl)bis(azo)]bis[N-(2,4-dimethylphenyl)-3- oxobutyramide]	100 t à 1000 t
3,6-bis(4-chlorophenyl)-1H,2H,4H,5H-pyrrolo[3,4- c]pyrrole-1,4-dione	100 t à 1000 t
3-hydroxy-N-(o-tolyl)-4-[(2,4,5- trichlorophenyl)azo]naphthalene-2-carboxamide	100 t à 1000 t
3,6-Bis(4-tert-butylphenyl)-2,5-dihydropyrrolo[3,4- c]pyrrole-1,4-dione	100 t à 1000 t
2-Propenoic acid, 2-methyl-methyl ester, polymer with 1,3-butadiene, butyl 2-propenoate and ethenylbenzene	100 t à 1000 t

ore 2015

Nom générique	Bande de tonnage
Carbon black	> 100 000 t
Silicon dioxide	> 100 000 t
Calcium carbonate	10 000 t à 100 000 t
Titanium dioxide	10 000 t à 100 000 t
Boehmite (Al(OH)O)	1000 t à 10 000 t
Copolymère de chlorure de vinylidène	1000 t à 10 000 t
Silicic acid, magnesium salt	1000 t à 10 000 t
Aluminium oxide	1000 t à 10 000 t
Polychlorure de vinyle	1000 t à 10 000 t
Mélange réactionnel de dioxyde de cérium et de dioxyde de zirconium	1000 t à 10 000 t
Calcium 4-[(5-chloro-4-methyl-2- sulphonatophenyl)azo]-3-hydroxy-2-naphthoate	1000 t à 10 000 t
Kaolin	100 t à 1000 t
····	

In hindsight, NanoDefine chose the relevant materials

French Inventory Rapport publique 2015

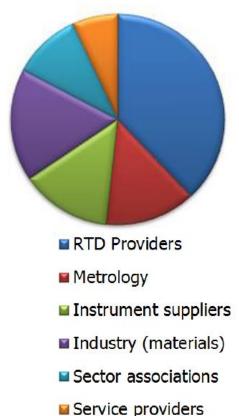
	2,2'-[(3,3'-dichloro[1,1'-biphenyl]-4,4'- diyl)bis(azo)]bis[N-(2,4-dimethylphenyl)-3- oxobutyramide]	100 t à 1000 t
I		

3.6-bis(4-chlorophenvl)-1H.2H.4H.5H-pvrrolo[3.4-

DG ENV, *Draft Impact Assessment on Transparency Measures on Nanomaterials on the Market*, 5 October 2016; Doc. CA/63/2016

Experience from the French notification system [...] concerns innovative nanomaterials only to a small extent. Rather, [it] relates to materials which have been on the market for a long time, and which companies were forced to assess against the nanomaterial definition for the first time.

dione	100 ta 1000 t	2-Propenoic acid, 2-methyl-methyl ester, polymer with 1,3-butadiene, butyl 2-propenoate and	100 t à 1000 t
		ethenylbenzene	


ore 2015

NanoDefine Consortium

29 Partners form a consortium of European RTD performers, metrology institutes and nanomaterials and instrument manufacturers.

